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Resumé
Borehulstemperaturer og iskernedata fra GRIP er benyttet til at modellere en 112200 år
lang temperaturhistorie. En varme- og isflydemodel er blevet udledt og implementeret
numerisk ved Crank-Nicolson metoden. Inputparametre til modellen er blevet optime-
ret, ved inverse analyse, til at give det bedst mulige fit til borehulstemperaturerne fra
GRIP. To metoder er blevet testet; en afhængig af isotop sammensætningen af GRIP
kernen, mens den anden kun afhænger af tidligere overflade temperaturer. Den første
har standard afvigelse 0.3323◦C fra GRIP borehulstemperaturer, mens den anden har
standard afvigelse 0.0182◦C. Temperaturhistorien fra Dahl-Jensen et al. (1998) er blevet
diskuteret udfra en sensitivitetsanalyse af de to metoder med tre forskellige diffusivi-
tetskoefficienter.

Abstract
The GRIP ice core data and borehole temperature has been used to model a temperature
record spanning the last 112200 years. A heat- and iceflow model has been derived and
implemented through a numerical Crank-Nicolson scheme. Inverse analysis has been
used to optimize the input parameters of the model, thus obtaining the best possible
fit to the GRIP borehole temperatures. Two methods are tested; one dependent on
isotopic composition found in the GRIP ice core and the other only on past surface
temperatures. The former method has standard deviation 0.3323◦C from the GRIP
borehole temperatures, while the latter has standard deviation 0.0182◦C. A sensitivity
analysis of both methods has been carried out, with three different diffusivity coefficients,
to discuss the temperature history derived in Dahl-Jensen et al. (1998).
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1 Introduction

The past and future climate seems to be on everyones lips along with an opinion on the
ongoing debate of our future with global warming. The studies of ice cores in Greenland
are important, because detailed information about our past climate are stored in the
glaciers – waiting to be unveiled. Knowledge of past climates can help us understand
the effects of future climate changes.

Every year a layer of snow is deposited on top of the Greenland ice sheet. The composi-
tion of the ice holds information about the local temperature, gases in the atmosphere,
acidity, chemical abundances etc. (Johnsen et al., 1997). Successive accumulation of
annual precipitation compress the underlying snow, which is converted into solid ice.
A layering is created down through the ice sheet and within each layer is information
stored in high temporal resolution (Johnsen et al., 2001).

A deep ice core drill retrieves the ice from the ice sheet. The ice core is about 8 cm
in diameter while the drill leaves a borehole of 13 cm in diameter. One such ice core
is the GRIP1-core. It was recovered in 1992, cut into pieces in half a meter and stored
for laboratory analysis. The borehole was filled with a liquid and left undisturbed for 3
years. Measurements of the temperature down through the liquid-filled borehole is used
in determination of past temperatures (Dahl-Jensen et al., 1998).

The scope of this study is to retrieve information about past temperatures through
inverse analysis using borehole temperatures.

A non-steady state heat- and iceflow model is derived and optimized to fit the borehole
temperatures measured at the GRIP-site. The optimized model reveal information about
past climates.

Two methods are tested in the optimization process; first isotopic composition of the ice
core is used as indirect knowledge (proxy) of past temperatures, following the method in
Johnsen et al. (1995); second, independent of proxy data, a fumble-in-the-dark method
is used, where qualified guesses of past temperatures are optimized for the best possible
fit. The latter method is a simplified version of the inverse Monte Carlo scheme from
Dahl-Jensen et al. (1998). The temperature history derived in Dahl-Jensen et al. (1998)
is compared to the derived temperature histories from this study.

The sensitivity of the optimized models are tested with several diffusivity coefficients to
investigate the effect of the not well determined diffusion process in solid ice (Johnsen
et al., 2000)

First, I will present the basics concepts of the physics of glaciers greatly inspired from
Cuffey and Paterson (2010). Then I will present the necessary tools in the development of
a numerical heat- and iceflow model along with a walkthrough of the model constructed
as part of this thesis.

1Greenland Ice Core Project
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2 The physics

In this section are the necessary physics of borehole temperature modelling derived. The
result are used in the numerical scheme presented later on.

2.1 Heat- and iceflow

The physics of a glaciers is complex and not fully understood. Approximations and
neglections are often necessary to derive a heat- and iceflow equation that fulfill the
specific problem to be solved. The general equation of heat- and iceflow is derived
in Cuffey and Paterson (2010). It follows from conservation of energy in a deforming
medium and Fouriers law of heat conduction, which states that heat flows from regions
of higher temperature to regions of lower temperature.

The coordinate system is placed at the base of the glacier with x-axis horizontal and
z-axis vertical, positive upward. Conservation of energy

ρ
DE

Dt
= ṠE −

∂qx

∂x
−
∂qy

∂y
−
∂qz

∂z
(2.1)

where ṠE represent heat produced by ice deformation, firn compaction and refreezing
of water. The gradient of the heat fluxes transports heat between regions of different
temperature. The significant component of internal energy is thermal, thus

DE

Dt
= c

DT

Dt
=
∂T

∂t
+ u
∂T

∂x
+ v
∂T

∂y
+ w

∂T

∂z
(2.2)

where u, v and w are ice advection (i.e. transport) velocities. The gradient of the heat
flux q is calculated from Fouriers law

−#q = −K∇T (2.3)

−
∂q

∂z
= K

∂2T

∂z2
+
∂K

∂z

∂T

∂z
(2.4)

with thermal conductivity K and similar in the x- and y-direction. The change in
thermal conductivity depends on temperature and density and is only significant in the
z-direction

dK

dz
=
∂K

∂ρ

∂ρ

∂z
+
∂K

∂T

∂T

∂z
(2.5)

Inserting equations (2.2), (2.4) and (2.5) into (2.1) gives the non-steady state heat- and
iceflow equation

ρc
∂T

∂t
= K∇2T − ρc

(

u
∂T

∂x
+ v
∂T

∂y

)

+

(

dK

dz
− ρcw

)

∂T

∂z
+ ṠE (2.6)

as derived in Cuffey and Paterson (2010).
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2.1 Heat- and iceflow

2.1.1 The simplified equation of heat- and iceflow

In this study a simplified version of (2.6) is used to fit a modelled temperature profile to
the borehole temperatures from GRIP. The heat sources in ṠE are neglected along with
advection in x- and y-directions. The density dependence is also neglected in dK/dz
(eq. 2.5). This simplifies to,

∂T

∂t
=

K

ρc

∂2T

∂z2
+

(

1

ρc

dK

dz
− w

)

∂T

∂z
(2.7)

or
∂T

∂t
=

K

ρc

∂2T

∂z2
− w

∂T

∂z
+

1

ρc

∂K

∂T

(

∂T

∂z

)2

.

The first term on the right hand side of (2.7) is the thermal conductivity from Fouriers
law. The coefficient K/ρc is called the diffusivity

[

m2/s
]

and is treated in section 2.1.3.
The second term of (2.7) relates to iceflow by advection. The horizontal advection is
assumed negligible because GRIP is located at an ice divide (Johnsen et al., 1995). In
general the horizontal advection is not negligible and should be included in the heat-
and iceflow equation.

This simplification applies to the GRIP location according to Johnsen et al. (1995).

2.1.2 Ice flow model

The advection velocity profile used in equation (2.7) is a Dansgaard-Johnsen flow model.
It assumes a constant horizontal velocity from the surface and down to a specific height
h (the kink height), where it decreases linearly to zero at bedrock (Dansgaard and
Johnsen, 1969). The model can be modified in several ways, in this study a bottom
sliding is added, to allow a non-zero ice-velocity at bedrock. The model depend on
accumulation rates λ and the ice thickness H; both of which can be a function of time.
In this study only the accumulation rate history changes with time.

As noted in section 2.1.1 only the vertical advection velocity is included in the heat- and
iceflow equation, so the vertical component of the advection velocity must be calculated.
It is assumed that the ice is incompressible and the density is constant. From the
continuity equation (in 2D),

∂ρ

∂t
+ ρ

(

∂w

∂z
+
∂u

∂x

)

= 0
∂ρ
∂t

=0
===⇒ (2.8)

∂w

∂z
+
∂u

∂x
= 0 (2.9)

is the vertical component found, here with constant thickness H,

w(z) =
λ(t)

He
·

{

z − h
2 (1 − fb), h ≤ z ≤ H

zfb + z2

2h(1 − fb), z < h
(2.10)
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2.1 Heat- and iceflow

where He = H− h
2 (1−fb) is the effective height, h is the kink height and fb is the bottom

sliding ratio (Notes on Continuum Mechanics, Dahl-Jensen). The advection velocity as
function of depth is plotted in figure 1.
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Figure 1: Vertical advection velocity has a linear relationship from the surface and down
to the kink height from where it continues as a squared relationship (Dansgaard and
Johnsen, 1969).

2.1.3 Thermal properties of ice

Most of the known thermal properties of ice has been found empirically in laboratories.
The thermal conductivity depends on density and temperature. It decreases with in-
creasing temperature and increases the increasing density (Cuffey and Paterson, 2010).
Different formulae for the thermal parameters are used in the litterature. Thermal con-
ductivity K, specific heat capacity c, density ρ and thermal diffusivity αT are presented
in SI-units, except T which is in °C,

in Cuffey and Paterson (2010):

K(T ) = 9.828 exp
(

−5.7 · 10−3(T + 273.15)
)

(2.11)

K(ρ) = 2.1 · 10−2 + 4.2 · 10−4ρ+ 2.2 · 10−9ρ3 (2.12)

c = 152.5 + 7.122(T + 273.15) (2.13)

Fukusako (1990) found

K(T ) = 1.16
(

1.91 − 8.66 · 10−3T + 2.97 · 10−5T 2
)

(2.14)

ρ = 917
(

1 − 1.17 · 10−4T
)

(2.15)

c = 185 + 6.89(T + 273.15) (2.16)
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2.1 Heat- and iceflow

James (1968) determined the diffusivity with some discrepancies from ice crystal orien-
tations

αT = (8.43 − 0.101T ) · 10−7(−40◦C < T < 60◦C) (2.17)

The diffusivity can be calculated as K/ρc ≡ αT . This gives 3 different formulae for the
diffusivity. The derived diffusivity coefficients are plotted in figure 2.

Diffusivity coefficients can be interpreted as the rate of mobility of temperature in ice.
Temperature velocity propagate proportional to the square root of the diffusivity (Cuffey
and Paterson, 2010).
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Figure 2: Thermal diffusivity as function of temperature.

2.1.4 Boundary conditions

The heat- and iceflow equation (2.7) can be solved numerically given certain boundary
conditions. There are two or three boundary conditions, depending on the specific setup.

The upper boundary condition depends on past surface temperatures (which can be
dependent on proxy data). At the surface (ice thickness H),

Tmodel(t, z = H) = Tsurf (t). (2.18)

At the bottom of the domain the geothermal heat flux is held constant. This approxi-
mation is justified because the temperatures at the base of the GRIP borehole are well
below melting point (Cuffey and Paterson, 2010),

∂T

∂z

∣

∣

∣

∣

z=0

= −
Qgeo

K
. (2.19)
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2.2 Isotopic composition of precipitation

In most papers on temperature profiles (e.g. Johnsen et al. 1995; Dahl-Jensen et al.
1998) a slab of rock is included in extent of the bedrock to account for climate-induced
temperature changes near bedrock. This calls for a third boundary condition at the in-
terface between ice and rock. The geothermal heat flux changes at the interface because
of the difference in conductivity (≈ 2.1 W/Km for ice and 2.5 W/Km for rock). The bound-
ary condition at the interface insures that the heat- and iceflow equation is continuous.
The geothermal heat flux in the ice must be equal to the heat flux in the rock.

Qinterface
geo,ice = Qinterface

geo,rock (2.20)

−Kice
∂T

∂z

∣

∣

∣

∣

z=interface

= −Krock
∂T

∂z

∣

∣

∣

∣

z=interface

(2.21)

With these boundary conditions a numerical solution to the heat- and iceflow equation
(2.7) can be found. The numerical scheme is introduced in section 3 and the numerical
version of the boundary conditions can be found in appendix A.

2.2 Isotopic composition of precipitation

When precipitation is forming, temperature exerts a strong influence on the resulting
isotopic composition (Johnsen et al., 1995). This concept was first proposed by Willi
Dansgaard in 1953 and has numerous applications in the analysis of ice core data.

Isotopic composition is described by delta notation and often given in delta values of ‰.
The delta notation is calculated from ratios of two measured quantities, R to a standard
ratio Rs (e.g Standard Mean Ocean Water),

δ =

[

R

Rs
− 1

]

· 103 ‰ (2.22)

There are several standard ratios for different isotopes. RSMOW = [18O]/[16O] is widely
used in glaciology. In this study, the notation δ refers to the ratio

δ18O =

[

R

RSMOW
− 1

]

· 103 ‰. (2.23)

where R = [18O]/[16O] measured in the ice core.

Water evaporates from the subtropical ocean and is transported away from the source
area. Cooling of the air mass leads to precipitation and the δ-value drops due to pref-
erentially depletion of heavier isotopes (18O). A latitudinal, altitudinal and continental
effect is observed with decreasing δ-values towards the poles, higher altitudes and above
continents respectively (Dansgaard, 1976). This is the process of fractionation.

Seasonal and longterm variations in temperature can be observed in the δ-profile ob-
tained from the ice sheet. Information of high temporal resolution are stored in the ice,
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2.2 Isotopic composition of precipitation

where winter and summer as well as the ice age are visible. The current relationship
between surface temperature and δ are known from empirical studies (Johnsen et al.,
1995),

δ = 0.67T − 13.7 ‰ (2.24)

and can in general not be used to model past climate.

The key point here is, that the isotopic composition of precipitation (hence snow), gives
indirect information about the temperature of which it was formed.

2.2.1 Surface temperature history

The temporal relationship between surface temperature and δ can be found by modelling
the measured borehole temperatures to a non-steady state heat- and iceflow equation
and calibrating the relationship with a second-order dependency

Ts = a + bδ + cδ2 (2.25)

e.g. through a least squares fit (Johnsen et al., 1997).

For an optimization method with no δ-dependence, past surface temperatures are pure
guess. Former studies can however be used as initial guesses.

2.2.2 Accumulation rates

The accumulation rate history λ has been determined by studying differences in the
thickness of annual layers and isotopic composition in the ice core (Dahl-Jensen et al.,
1993),

λ(δ) = λ0 exp(−10.09 − 0.653δ − 0.01042δ2) (2.26)

from Johnsen et al. (1995), where λ0 = 0.23 m/year, is the present day accumulation rate.
A depth-age relation for the GRIP ice core can be seen in figure 6 (appendix B).

It can be of interest to know past accumulation rates independent of δ, Dahl-Jensen
et al. (1998) gives λ directly from past unknown surface temperatures Ts,

λ(T ) = λ0 exp
[

0.0467(Ts − T0) − 0.000227(Ts − T0)
2
]

. (2.27)

where T0 = 31.70◦C, the present day surface temperature at the GRIP-site (Dahl-Jensen
et al., 1998).

Both accumulation rate histories are used in this study and depends on the optimization
method chosen to derive past surface temperatures.

All the necessary physics are now derived and ready to be applied. The tools applying
the physics are presented in the next section.
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3 The tools

The tools presented in this section has many applications in general. Here they are used
to develop and apply the derived physics of section 2.

The output of the heat- and iceflow equation is the temperature as function of depth
in the ice sheet for all timesteps. The computation depend on geothermal heat flux, ice
flow pattern, surface temperatures and accumulation rates (Johnsen et al., 1995). This
is the input, which was covered in section 2. The numerical setup should be formed
around the physics and developed for each specific situation.

A part of the numerical setup is choosing a coordinate system, numerical solution scheme,
resolution of data and a suitable optimization method for the inverse analysis. These
are all important aspects of modelling and a great part of the scope of this thesis.

A full numerical analysis, and the basis of the results presented, involves several steps:

1. Developing a forward model, that can solve the heat- and iceflow equation given
certain boundary conditions, surface temperature history, accumulation rate his-
tory and respective constants.

2. A loglikelihood function, that measures the misfit between model and data. This
involves a covariance matrix with uncertainties.

3. Parameter optimization by maximizing the loglikelihood function.

These steps are presented in the following subsections.

3.1 Forward model

A coordinate system is determined. The origin is placed at the interface between ice and
rock with negative z-values below and positive above. A 3km slab of rock is included
in the setup. This is done to ensure heat conduction into the bedrock and allows the
temperature gradient to vary over time at the interface between ice and rock. The
numerical model runs from the bottom z = −3000m to z = 3003.8 = H, the height of
the GRIP-site (Dansgaard et al., 1993). Since negative integers are not allowed, i, the
height step, runs from 0 to 3000m + 3003.8m in steps of 5m.

The time starts −112200 years before present (BP) and runs with increasing resolution
until present.

t = [−112200 : 1000 : −40000,−39000 : 100 : −15000,−14900 : 20 : 0]

This makes the computations more efficient and is based on the fact, that resolution
decreases with time (Dahl-Jensen et al., 1998).

The simplified heat- and iceflow equation (2.7), must be discretized before it can be
solved numerically. A Crank-Nicolson method is chosen to minimize the error, optimize
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3.2 Inverse analysis

efficiency and because it is unconditional stable (Recktenwald, 2011). The method can
be used to solve non-linear partial differential equations of the form

∂T

∂t
=
∂2T

∂z2
(3.1)

which is the one dimensional heat equation.

The derivation of the Crank-Nicolson method and the resulting numerical heat- and
iceflow equation can be found in appendix A.

The numerical scheme evolves from an initial temperature profile. The real temperature
profile (112200 years ago) is unknown so the present day GRIP profile is used. This can
be done, because it is assumed that the initial conditions are forgotten, when the latest
10000 years are generated (Dahl-Jensen et al., 1998).

For the inverse analysis is Matlabs fminsearch-function chosen to minimize the (mi-
nus)loglikelihood function, which is based on the Nelder-Mead simplex method (Lagarias
et al., 1998).

The above derivations and conditions result in a forward model. The derivations are
quite tedious, so it is placed in appendix A, the numerical Matlab-code is included in
appendix C. The next step, now with the forward model in place, is the loglikelihood
function and the basics of inverse analysis.

3.2 Inverse analysis

The objective of almost any scientific experiment is to measure some observed outcome
and infer a theory that predicts future outcomes of the same experiment. This is the
basics of physical theories and laws. In a more formalized way, we can say that we wish
to relate parameters of a model, m to an observed dataset, d. This relation can be
described by the forward operator G

G(m) = d (3.2)

where m is an s element vector of model parameters and d is an r element vector of
datapoints (Tarantola, 2005; Aster, 2005).

A forward problem is to find d given m (this is analogous to finding datapoints (x, y) of
the function f(x) = ax + b where a and b are given).

Tarantola (2005) calls it a ’näıve point of view’:

Taking first a näıve point of view, to solve a forward problem means to predict
the error-free values of the observable parameters d that would correspond
to a given model m.

Tarantola (2005).
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3.2 Inverse analysis

The ’näıve’ in this viewpoint is to believe in a perfect experiment. All observations
contain errors and noise, which can arise from uncertainties in the measurement, nu-
merical round-offs etc. Predicted values can, in general, not be identical to the observed
(Tarantola, 2005; Aster, 2005).

The model parameters, and how they relate to observed data, can also hold uncertainties
or imperfections. This knowledge is what characterizes an inverse problem. It is to find
m given d,

m = G−1(d) (3.3)

(or by analogue as above; it is to find parameters a and b that fits f(x) = ax+ b to some
datapoints (x, y) that might contain some amount of noise).

The prior (a priori) knowledge of a system is used in formulating and solving the inverse
problem hence obtaining posterior (a posteriori) knowledge about the model parameters
and the relation to observed data. Posterior knowledge can be a likelihood2 function,
which measures how well observed data dobs fit predicted data dpre = G(m). The
likelihood, misfit and loglikelihood functions are

L(m) = exp(−S(m)) (3.4)

S(m) =
1

2

(

G(m) − dobs
)T

C−1
(

G(m) − dobs
)

(3.5)

log(L(m)) = l(m) = −S(m) (3.6)

where C is the covariance matrix of uncertainties in dobs, which follows a Gaussian
distribution (Mosegaard and Tarantola, 1995).

By maximizing the loglikelihood function we get the most probable solution to the inverse
problem (Aster, 2005).

3.2.1 Covariance matrix

In this study the covariance matrix holds uncertainties in measurements of temperature
and depth of the liquid filled borehole. Notes from the logging procedure (Hvidberg
et al., 2002) is used in the construction of the covariance matrix.
First Gaussian noise η, is added to the predicted depths3,

zobs = zpre + η (3.7)

The noise added has mean zpre and standard deviation 0.001m. This estimate fits well
with the error noted in Hvidberg et al. (2002). The constructed zobs are used with the

2In Sambridge and Mosegaard (2002) it’s defined as: a function describing the probability that a given
parameterized model is consistent with observed data.

3The depths are constructed as steps of 5 m, from the base of the ice sheet to the surface
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3.3 Two optimization methods

forward model, to interpolate GRIP borehole temperatures resulting in dobs. The misfit
between constructed and observed temperatures gives the covariance matrix,

Sz = dpre − dobs (3.8)

Cz = Sz · S
T
z . (3.9)

To eliminate bias it is computed from the mean of N = 800 m×m matrices, where m has
same dimension as z. The uncertainties in the temperature measurements are ±5mK
(Dahl-Jensen et al., 1998) (independent of depth), which gives a diagonal covariance
matrix

Cσ = σ2 · I (3.10)

The respective covariance matrices are added together C = Cz + Cσ .

3.2.2 Estimating confidence intervals

Confidence intervals of each parameter in m can be approximated by calculating the
observed information matrix IO(m) which is minus the Hessian matrix (the second-
order partial derivates). The following is adapted from Coles (2001),

IO(m) =

















−∂
2l(m)
∂m2

1

· · · − ∂2l(m)
∂m1 ∂mn

...
. . . − ∂2l(m)

∂mi ∂mj

...

− ∂2l(m)
∂mj ∂mi

. . .

− ∂2l(m)
∂mn ∂m1

· · · −∂
2l(m)
∂m2

n

















(3.11)

here l(m) is the log-likelihood function.

The confidence intervals is derived from the diagonal elements of the inverse I−1
O (m)i,i,

such that,

mi ± zα
2

√

I−1
O (m)i,i (3.12)

where zα
2

is the (1 − α
2 ) quantile of the standard normal distribution. For the 95%

confidence interval it is Φ(z) = 1 − 1−0.95
2 = 0.975 ⇒ zα

2
= Φ−1(0.975) = 1.96.

3.3 Two optimization methods

Past surface temperatures are computed by maximizing the loglikelihood function with
respect to the free parameters, that gives the best fit between modelled and measured
borehole temperatures from GRIP.

Two methods are applied. In the following denoted method 1 and method 2:
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3.3 Two optimization methods

1. Based on the GRIP δ18O-record, this method is similar to the one used in Johnsen
et al. (1995). Past surface temperatures and accumulation rates are a function of
δ18O. The second order relation (equation 2.25) to the past surface temperatures
are unknown and gives 3 free parameters for optimization. The geothermal heat
flux is also free to vary, thus giving a total of 4 degrees of freedom.

Variables assumed constant are bottom sliding ratio fb = 0.15, total height of
the ice sheet and the kink height H = 3003.8 and h = 1200 respectively (Dans-
gaard et al., 1993). The initial parameters of past surface temperatures are a =
−211, 4◦C, b = −11.88◦C/‰, c = −0.1925◦C/(‰)2. The accumulation rate is a
known function of the GRIP δ18O-record (equation 2.26).

2. Based on qualified guesses of the past unknown surface temperatures. This ”fumble-
in-the-dark” method seek the best fit to the GRIP borehole temperatures, given
10 variable surface temperatures back in time. 10 points in time have been cho-
sen with increasing distance to keep computational run-time down. The default
number of function evaluations of fminsearch is 200 per parameter. The average
run time is 3-5 minutes for optimization of 10 parameters. Initial parameters are
adapted directly from Dahl-Jensen et al. (1998) and given in table 1.

This method holds 11 degrees of freedom in total, 10 from the past unknown surface
temperatures and the geothermal heat flux.

Past accumulation rates are computed from (equation 2.27).

Variables fb, H and h are assumed constant as above.

A comparison of the two methods are discussed in section 5.4.

Years BP (kyr) Temperature ◦C σ
112.200 -40.000 7.000
25.000 -55.537 5.000
10.000 -34.252 2.000
8.200 -29.974 2.000
7.000 -29.301 2.000
5.000 -29.245 2.000
2.000 -31.907 1.000
1.000 -30.708 1.000
0.400 -32.236 0.500
0.000 -31.710 0.100

Table 1: Surface temperatures from Dahl-Jensen et al. (1998) used as initial guess.
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4 Results & analysis

First the physics was derived, then it was converted into a forward model and applied
through inverse analysis and here are the results.

Two optimization methods are tested, both of them with three different diffusivity co-
efficients to investigate the sensitivity of the method and the forward model.

Past surface temperatures computed from the GRIP δ18O-record, following method 1,
are plotted in figure 3(a) with corresponding parameters in table 3. In figure 3(b) and
table 4 are the results of method 2.

The surface temperature history derived in this study, are best fits to the measured
borehole temperatures. Standard deviations are noted in table 2 and deviations as
function of depth are plotted in figure 4. The confidence intervals are smaller than four
significant digits and not shown in the figures or tables.

The temperature history given in Dahl-Jensen et al. (1998) are used as reference. It
has been derived from an inverse Monte Carlo method, where 126 free parameters are
optimized, to fit the borehole temperatures from GRIP. The temperature history shown
(in red), is the most likely of 2000 models, with standard deviations showing increasing
uncertainty back in time (error bars in figure 3(b)). The temperature history provide
an excellent fit to the borehole temperatures but cannot be used to date distinct (short-
termed) climatic events.

Only the last 10000 years are shown in the figures, because the initial conditions are
assumed to be present in the earlier temperature history.
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Method 2 Method 1
Paterson 0.0114 0.3234
Fukusako 0.0088 0.4256
James 0.0344 0.2480
〈std〉 0.0182 0.3323

Table 2: Standard deviations for the two methods and for each diffusivity coefficient.

a b c Qgeo

Paterson -11.451 -1.634 -0.063 0.057
Fukusako -9.008 -1.534 -0.062 0.058
James -60.134 -3.247 -0.069 0.051

Table 3: Derived parameters from method 1.

Paterson Fukusako James
Ts(t1) -35.3923 -39.3486 -28.1909
Ts(t2) -58.9432 -57.4783 -45.6422
Ts(t3) -35.1083 -36.1020 -33.0400
Ts(t4) -30.4940 -29.9417 -31.3205
Ts(t5) -29.5523 -28.7600 -32.1921
Ts(t6) -30.2102 -30.2249 -30.7716
Ts(t7) -31.3780 -31.3824 -31.0461
Ts(t8) -31.0237 -30.9474 -31.4373
Ts(t9) -32.2939 -32.3481 -32.1350
Ts(t10) -31.6531 -31.6203 -31.7033
Qgeo [W/Km] 0.0500 0.0504 0.0499

Table 4: Derived surface temperatures from method 2. Ts(t1) refers to the surface
temperature at t1 = 112kyr BP following the years in table 1.
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(a) Method 1, past surface temperatures derived from the δ
18O-record. Dahl-Jensen et al. (1998)

temperature history are plotted as reference.
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(b) Method 2, past surface temperatures derived from ”fumble-in-the-dark”. Solid lines connect the
optimized parameters. Dahl-Jensen et al. (1998) temperature history are plotted as reference.

Figure 3: Past surface temperatures derived from (a) method 1, filtered with a 200-year
Gaussian low-pass filter; (b) method 2.



H
ei

gh
t

ab
ov

e
b
ed

ro
ck

[m
]

Temperature [◦C]

−0.1 0 0.1
0

500

1000

1500

2000

2500

3000

(a) Method 2 deviations

 

 

James

Fukusako

Paterson

Temperature [◦C]

−0.5 0 0.5 1
0

500

1000

1500

2000

2500

3000

(b) Method 1 deviations

Figure 4: Deviations from GRIP borehole temperatures as function of depth for the
two methods. The fluctuations near the bottom arise from decreasing resolution back in
time.
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5 Discussion

The results derived from the δ18O-record (method 1) and past unknown surface tem-
peratures (method 2) are discussed in the following sections. A comparison of the two
methods follows along with a discussion of the diffusivity coefficients.

5.1 Temperature history – method 1

The surface temperatures derived from method 1, has an average standard deviation of
〈σ〉 = 0.3323◦C from the GRIP borehole temperatures.

Deviations as function of depth are plotted in figure 4(b). The fit is best from a depth of
500m to 1500m. Increasing deviations are seen from a depth of 1500m to bedrock. This
misfit is also observed in the temperature history derived via method 2 (figure 4(a)),
though somewhat smaller, section 5.4 has a discussion on this.

Some features can be observed in the figure; a rapid increase in temperature up to 10000
years BP marking the start of Holocene (our present interglacial period); a short and
rapid decrease in surface temperature at 8.2 kyr BP (the 8.2 kyr event). More subjective
observations, include a post-glacial climatic optimum lasting from 10 kyr to 7 kyr BP, a
small decrease in temperature from around 3.5 kyr to 1000 yr BP and a small increase
from 1000 yr BP to present.

The derived surface temperature history has few similarities with the history from Dahl-
Jensen et al. (1998). An important note in this respect, is that the δ18O-record is also
lacking these features, most noticeable is the lack of a Climatic Optimum (CO from 8kyr
to 5 kyr BP). Figure 7 in appendix B has plots of the δ18O-record.

The NorthGRIP4 δ18O-record has a larger shift than the GRIP record during the CO
(Johnsen et al., 2001). There are several explanations for this; Johnsen et al. (2001)
suggest that precipitation cyclones had easier access to higher latitudes (hence North-
GRIP). Another explanation, not just related to the CO, is presented by Vinther et al.
(2009). The paper suggest that ice sheet elevation changes are the cause of the flat
profile obtained from the GRIP δ18O-record. The elevation changes are derived from
gas content of the ice core. The results show that the elevation of the GRIP site was
100-150 m higher 10000 years BP and has decreased steadily to the present height. A
rough linear approximation gives a decrease of 150m/10000yr = 0.015 m/yr.

Vinther et al. (2009) conclude that a correction to the GRIP δ18O-record with respect
to elevation changes is necessary to ”rehabilitate” δ18O as a reliable temperature proxy.

This is a plausible explanation for the surface temperature history seen in figure 3(a).
Elevation changes has counteracted the δ18O signal and evened it out so the CO is not
observed.

4North Greenland Ice Core Project (Dahl-Jensen et al., 2002).
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5.2 Temperature history – method 2

The sensitivity of the model with respect to the diffusivity coefficient is easily seen. The
three diffusivity coefficients show similar results, though the James (1968) gives a lower
temperature in general and has a smaller amplitude.

5.2 Temperature history – method 2

The past surface temperatures derived from method 2 has an excellent fit, with 〈σ〉 =
0.0182◦C. The deviations as function of depth can be seen in figure 4(a).

This is expected because the free parameters, in this method, are independent of each
other and can thus provide a better fit.

There are signification differences between the three diffusivity coefficients used. Diffu-
sivities from Cuffey and Paterson (2010) and Fukusako (1990) show similar results with
the latter a bit higher at 7 kyr BP. The third diffusivity from James (1968) shows lower
temperatures from 7 kyr to 4 kyr BP.

The temperature history derived in Dahl-Jensen et al. (1998) has a noticeable feature
from 2000 yr BP to 400 yr BP – the medieval warming that is not seen on the temper-
atures derived from the GRIP δ18O-record. This warmer period is important for those
debating the ’Hockey Stick” controversy (Hockey stick controversy, Wikipedia, 2011). It
is out of the scope of this study to go into this debate, but it does however lead to a
relevant question: ”What is the effect of the diffusivity coefficient on the derived surface
temperatures, and can it verify the Dahl-Jensen et al. (1998) temperature history?”.

With diffusivities from Cuffey and Paterson (2010) and Fukusako (1990) a small increase
in temperature is observed from 2000 yr to 1000 yr BP followed by a rapid decrease to
400 yr BP. All derived surface temperatures are within the standard deviations noted
in Dahl-Jensen et al. (1998), except the diffusivity from James (1968) which fall out of
the standard deviations at 7 kyr BP, with a temperature profile evolving opposite of the
two other diffusivities. This is discussed in the next section.

5.3 The effect of diffusivity

It is evident from figure 3 that a change in the diffusivity coefficient changes the derived
surface temperatures. To see if this change is reasonable within what is expected from
the physics, a plot of constant diffusivity coefficients are presented in figure 5. Applied
to the forward model, it shows that a low diffusivity coefficient gives colder profiles than
profiles with higher diffusivity coefficients. This is not a general observation, but an effect
of the temperature history at GRIP. What is seen in the figure is actually the amount of
temperature-remnants of the last ice age. As mentioned in section 2.1.3, the diffusivity
coefficient carries information about the propagation velocity of surface temperatures.
The temperature profile with the lowest diffusivity coefficient (far left on figure 5) has
the lowest temperature propagation velocity down through the ice sheet, thus making
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5.4 Two methods – a summary

the the ice age temperatures visible at 1000 m above bedrock. The temperature profile
with the highest diffusivity coefficient (far right on the figure) has ”forgotten” the ice
age because the temperature propagation velocity is much higher.

The three diffusivity coefficients are approximately (1.2, 1.5 and 1.6) ·10−6m2/s at T =
−30◦C, James (1968), Cuffey and Paterson (2010) and Fukusako (1990) respectively.
This correspond to the second, fifth and sixth line from the left on the figure.

The results of method 1 and 2 can be explained from this. The model is evaluated from
112200 years BP up to present. The initial temperature profile is assumed to be forgotten
in the derived temperature history, but in the light of the velocity interpretation of
diffusivity, it is possible that the initial temperature profile has not been totally forgotten
– especially for the James (1968) diffusivity coefficient.

Dahl-Jensen et al. (1998) has a time series starting at 450.000 years BP, more than
twice the time scale for thermal equilibrium of ice to bedrock, to ensure that the initial
unknown conditions are forgotten, when the latest 50000 years are generated. With a
timescale of 112200 years in this study, it is possible that the initial conditions are still
present in the ice. And following the calculation from Dahl-Jensen et al. (1998), with a
timescale of 112200 years, only about the latest 10000 years, should have forgotten the
initial conditions.

5.4 Two methods – a summary

A recap of the observations from the previous subsections show,

1. A better fit with method 2, where past surface temperatures are derived indepen-
dent of the δ18O-record. The independent parameters are the most likely reason
for the good fit.

2. The bigger misfit in method 1, is likely due to parameter-dependence. More pa-
rameters could provide a better fit. There are eight degrees of freedom in the
analysis of Johnsen et al. (1995), but only 4 is noted specifically, so it has not been
possible to reproduce in full. They get a standard deviation of 0.036◦C, about 10
times lower than this study, which implies that the last 4 parameters are crucial
for obtaining a better fit.

3. A possible explanation for the flat δ18O-record is an even-out effect from elevation
changes at GRIP.

4. Changes in diffusivity coefficients has only little effect on derived surface temper-
atures and fit within the uncertainties of Dahl-Jensen et al. (1998).

5. Misfits in figure 4 show the biggest discrepancies at the top and bottom of the ice.
These misfits are probably a result of the simplifications made to the heat- and
iceflow equation and the constants used, e.g. the bottom sliding ratio, the kink
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5.4 Two methods – a summary
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Figure 5: Effect of the diffusivity coefficient on the model. From left to right α =
[1.1, 1.2, . . . , 1.6] · 10−6[m2/s]. Method from (Dahl-Jensen et al., 1998)

height and total height. These constants could be added as input parameters in
both methods to give a better fit.

6. The δ18O-record goes 112200 years back, which put a constraint on the timescale
in method 1. Method 2 however, is independent of the δ18O-record so the timescale
can be chosen freely. This could give a more correct profile near bedrock for the
James (1968) diffusivity coefficient.

With a correction of the δ18O-record for elevation changes, suggested by Vinther et al.
(2009), could method 1 be able to show high resolution climate changes that method 2
(and Dahl-Jensen et al. (1998)) could not. This could boost the reliability of the method
and give more detailed information about past climates.

21



6 Conclusion

The process of obtaining information about past climates from borehole temperatures
has been described in this thesis. The relevant physics has been derived and applied
through a numerical forward model. The surface temperature history has been generated
via inverse analysis of the borehole temperatures from GRIP. Two methods of parameter
optimization has been derived and compared to the temperature history generated in
Dahl-Jensen et al. (1998).

Standard deviations of 0.3323◦C and 0.0182◦C, method 1 and 2 respectively, from the
measured borehole temperature, reveal the obvious difference in initial conditions: mu-
tual parameter dependence.

A sensitivity analysis of the methods with respect to three diffusivity coefficients has
shown expected results from the discussion on diffusivity. The diffusivity coefficients fit
well within the standard deviations of the Dahl-Jensen et al. (1998) temperature history,
except the James (1968) diffusivity at 7000 years BP which is 3◦C colder than Dahl-
Jensen et al. (1998). More work needs to be done i order to fully explain the deviation,
a starting point would be to increase the timescale, to see if the initial conditions are
still present.

The work by Vinther et al. (2009) show how to rehabilitate the δ18O-record. This new
record could easily be inferred in the inverse analysis applied in this thesis.

To go into more work on the diffusivity coefficients, a paper by Pettit et al. (2007) show
that the flow pattern is affected by crystal orientations of the ice. The effect is most
pronounced in the lower half of the ice sheet. This depth-dependency could be used with
the James (1968) diffusivity coefficient to search for a better fit.

And a last suggestion would be to turn op the number of parameters in method 2, to
get an analysis more like the inverse Monte Carlo used in Dahl-Jensen et al. (1998) and
apply the three diffusivity coefficients.
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A The numerical scheme

Many differential equations need to be discretized before they can be solved numeri-
cally. The key to this process is Taylor expansions and finite difference approximations.
Four difference approximations are used to discretize the differential equation in this
study.The following is adapted directly from Recktenwald (2011), O denotes the order
of the truncation error. First the forward difference approximation,

∂φ

∂x

∣

∣

∣

∣

xi

=
φi+1 − φi

∆x
+ O(∆x) (A.1)

Similarly by a Taylor series expansion about δx = −∆x the backward difference approx-
imation can be shown to be
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∆x
+ O(∆x) (A.2)

The central difference approximation can be constructed from the two equations above

∂φ

∂x

∣

∣

∣

∣

xi

=
φi+1 − φi−1

2∆x
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The second order central difference approximation is

∂2φ

∂x2

∣

∣

∣

∣

xi

=
φi+1 − 2φi + φi−1

∆x2
+ O(∆x2). (A.4)

Tnd the Crank-Nicolson is the average of the central difference approximation and is
chosen over e.g. a forward scheme, because of the higher order truncation error O(∆t2)+
O(∆x2) (Recktenwald, 2011).

The Crank-Nicolson method sets up a system of equations that is solved at each (discrete)
time step ∆t for all steps in space ∆z. The notation for the temperature at time j at
height i is T j

i , hence t = j ·∆t and z = i ·∆z.

The coordinate system is placed at the bottom of the domain so the z-axis is positive
upward. Time runs from -112200 years BP to present with increasing resolution.

The left-hand side of equation (2.7) is approximated by a forward difference in time:

∂T

∂t
≈

T j+1
i − T j

i

∆t
(A.5)

The first term of the right-hand side of equation (2.7) is approximated with the average
of the second order central differences in space (this is special for Crank-Nicolson) and
forward difference in time.
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2
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)

(A.6)
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The second term of the right-hand side of equation (2.7) is approximated with the average
of the first order central differences in space and forward difference in time.

(

1
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dz
− w
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2
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i−1

2∆z

)

(A.7)

Where K◦ ≡
1
ρc

dK
dz .

Collecting the above equations gives equation (2.7) in discrete form:

T j+1
i − T j

i

∆t
=
αT

2

(

T j+1
i+1 − 2T j+1

i + T j+1
i−1

(∆z)2
+

T j
i+1 − 2T j

i + T j
i−1

(∆z)2

)

+
(K◦ − w)

2

(

T j+1
i+1 − T j+1

i−1

2∆z
+

T j
i+1 − T j

i−1

2∆z

)

(A.8)

Equation (A.8) must be rearranged to set up the system of equations to be solved. All
(j + 1)-terms is collected on the left-hand side and (j)-terms on the right-hand side.
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By denoting si = αT

2∆z2∆t and ri = K◦−w
4∆z ∆t,
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i+1 + riT

j+1
i−1 − siT

j+1
i+1 + 2siT

j+1
i − siT

j+1
i−1 = (A.11)

T j
i + riT

j
i+1 − riT

j
i−1 + siT

j
i+1 − 2siT

j
i + siT

j
i−1 ⇔ (A.12)

T j+1
i+1 (−ri − si) + T j+1

i (1 + 2si) + T j+1
i−1 (ri − si) = (A.13)

T j
i+1(ri + si) + T j

i (1 − 2si) + T j
i−1(si − ri) (A.14)

this tridiagonal system of equations can be written in short

aiT
j+1
i−1 + biT

j+1
i + ciT

j+1
i+1 = −aiT

j
i−1 + b†iT

j
i − ciT

j
i+1 (A.15)

for 1 < j < n with ai = (ri − si), bi = (1 + 2si), b†i = (1 − 2si) and ci = (−ri − si).

In matrix notation AT j+1 = BT j





















b1 c1 0 · · · 0

a2 b2 c2 · · · 0

0 a3 b3
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...

0 0
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0 0 · · · an bn









































T j+1
1

T j+1
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T j+1
3
...

T j+1
n
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b†1 −c1 0 · · · 0

− a2 b†2 −c2 · · · 0

0 −a3 b†3
. . .

...

0 0
. . .

. . . −cn−1

0 0 · · · −an b†n









































T j
1

T j
2

T j
3
...

T j
n





















(A.16)
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This system can be solved very efficiently with the Thomas Algorithm (Tridiagonal
matrix algorithm, Wikipedia, 2011) which is implemented with the user-created Matlab
function TDMAsolver (see appendix C).

The derivative of the conductivity K◦ ≡
1
ρc

dK
dz is computed by a difference approximation

dK

dz
=
∂K

∂T

∂T

∂z
≈ (A.17)

dK

dz
(i) = −5.7 · 10−3 · 9.828 exp

(

−5.7 · 10−3(T + 273.15)
)

(

T j
i+1 − T j

i−1

2z

)

(A.18)

where the conductivity from equation (2.11) are used.

Boundary conditions The tridiagonal system of equations above can be solved with
appropriate boundary conditions. The theoretical boundary conditions formulated in
section 2.1.4 is adapted to fit the numerical scheme.

At the surface the temperature Tsurf is determined as a function of time, and the deriva-
tion depend on the method chosen. The boundary condition formulated in equation
(2.18) is inferred by putting an = 0, bn = 1 and dn = Tsurf in the bottom equation of
the tridiagonal matrix:

anT j+1
n−1 + bnT j+1

n = −anT j
n−1 + b†nT j

n = dn (A.19)

T j+1
n = dn = Tsurf (A.20)

The thermal conductivity changes at the interface between ice and bedrock (z = z0) so
the boundary condition formulated in equation (2.21) gives

−Kice
∂T

∂z
= −Krock

∂T

∂z
(A.21)

−Kice

T j+1
z0+1 − T j+1

z0

∆z
= −Krock

T j+1
z0

− T j+1
z0−1

∆z
(A.22)

(Kice + Krock)T
j+1
z0

= KiceT
j+1
z0+1 + KrockT

j+1
z0−1 (A.23)

−
Kice

(Kice + Krock)
T j+1

z0+1+T j+1
z0

−
Krock

(Kice + Krock)
T j+1

z0−1 = 0 (A.24)

This is inferred by putting az0
= − Krock

(Kice+Krock) , bz0
= 1, cz0

= − Kice
(Kice+Krock) and dz0

= 0.

At the bottom of the bedrock the heat flux is held constant, equation (2.19) gives

Qgeo = −Krock
∂T

∂z
≈ −Krock

T j+1
2 − T j+1

1

∆z
(A.25)

−
Qgeo

Krock
∆z = T j+1

2 − T j+1
1 (A.26)

This is inferred by putting b1 = −1, c1 = 1 and d1 = − Qgeo

Krock
∆z.
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Figure 6: Depth-age relation. Timescale ss09 not correct for Holocene (Johnsen et al.,
1997).
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C Code

C.1 Forward model

1 function Tz = Tmodel(m)
2 global Tinit
3 global t
4

5 % Method 1
6 Qgeo = m(4); % Geothermal heat flux (W/mˆ2)
7 k = m(5);
8

9 % Method 2
10 Qgeo= m(11); % Geothermal heat flux (W/mˆ2)
11 k = m(12);
12

13 [Ts lambda] = Tsurf(m); % Surface temperatures
14

15 % From Dansgaard 93
16 zH = 3003.8; % Ice thickness (m)
17 h = 1200; % DJ kink height
18 fb = 0.15; % D−J model bottom sliding ratio
19 Krock = 2.5; % Thermal conductivity of rock W/(K*m)
20 rhorock = 2700; % Density of rock kg/mˆ3
21 Crock=800; % Specific heat capacity J/(K*kg)
22 dTdz 0= Qgeo/Krock; % Gradiant is found from the geothermal heat flux
23

24

25 % Height steps
26 zbed = −3000;
27 dz = 5;
28 z = zbed:dz:zH; % −3000 to 3003 in steps of 5m.
29 Nz = max(size(z)); % Number of height steps
30 z0 = find(z == 0); % The interface between ice and bedrock
31 He = zH−0.5*h*(1−fb); % D−J model effective height
32

33

34 % Time
35 ddt = abs(t(1:end−1)−t(2:end))*31536000;
36 Nt = max(size(t));
37

38 % Initialize arrays
39 wz = zeros(Nz,1);
40 kz = zeros(Nz,1);
41 K = zeros(Nz,1);
42 rho = zeros(Nz,1);
43 C = zeros(Nz,1);
44 dKdz = zeros(Nz,1);
45

46 s = zeros(Nz,1);
47 r = zeros(Nz,1);
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48 a = zeros(Nz,1);
49 ad = zeros(Nz,1);
50 b = zeros(Nz,1);
51 bd = zeros(Nz,1);
52 c = zeros(Nz,1);
53 cd = zeros(Nz,1);
54 d = zeros(Nz,1);
55 Tz = zeros(Nz,Nt);
56

57

58 % Parameters in rock
59 kz(1:z0−1) = (Krock/(rhorock*Crock)); % Diffusivity [mˆ2/s]
60 wz(1:z0−1) = 0; % Vertical advection [m/s]
61

62 rho(1:z0−1) = rhorock; % Density [kg/mˆ3]
63 C(1:z0−1) = Crock; % Specific heat capacity [J/(K*kg)]
64 K(1:z0−1) = Krock; % Thermal conductivity [W/(K*m)]
65 dKdz(1:z0−1) = 0; % Derivative of thermal conductivity
66

67

68 Tz(:,1) = Tinit; % Initial temperature profile
69

70 % Begin time:
71

72 for ii = 1:Nt−1
73

74 % Vertical advection velocity
75 for jj = z0:Nz
76

77 if z(jj)>h % D−J velocity
78 wz(jj)=−lambda(ii)*(z(jj)−0.5*h*(1−fb))/He;
79 else
80 wz(jj)=−lambda(ii)*((1−fb)*z(jj)ˆ2/(2*h)+fb*z(jj))/He;
81 end
82

83 end
84

85 % Thermal conductivity and diffusivity
86 % Fukusako (1990):
87 rho(z0:Nz) = 917*(1−1.17e−4.*Tz(z0:Nz,ii));
88 % Cuffey & Paterson:
89 C(z0:Nz) = 152.5+7.122.*(Tz(z0:Nz,ii)+273.15);
90 K(z0:Nz) = 9.828*exp(−5.7e−3.*(Tz(z0:Nz,ii)+273.15));
91

92 if k == 1 % Paterson diffusivity
93 kz(z0:Nz) = (K(z0:Nz)./(rho(z0:Nz).*C(z0:Nz)));
94

95 elseif k == 2 % Fukusako (1990) diffusivity
96 kz(z0:Nz) = (0.002083286*Tz(z0:Nz).ˆ2−0.271037908*Tz(z0:Nz)+36.962202916)/31536000;
97

98 elseif k == 3 % James (1968) diffusivity
99 kz(z0:Nz) = (8.43 − 0.101*Tz(z0:Nz))*1e−3*1e−4;

100 end
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101

102

103 % Derivative of thermal conductivity
104 dKdz(z0) = −(5.7e−3)*K(z0)*((1/dz)*(Tz(z0+1,ii)−Tz(z0,ii)))/(rho(z0)*C(z0));
105 dKdz(Nz) = −(5.7e−3)*K(Nz)*((1/dz)*(Tz(Nz,ii)−Tz(Nz−1,ii)))/(rho(z0)*C(z0));
106

107 dKdz(z0+1:Nz−1) = −(5.7e−3)*(K(z0+1:Nz−1)).*((1/(2*dz))*(Tz(z0+2:Nz,ii)−...
108 Tz(z0:Nz−2,ii)))./(rho(z0+1:Nz−1).*C(z0+1:Nz−1));
109

110 % Crank−Nicolson method:
111

112 s = kz.*ddt(ii)/(2*dzˆ2);
113 r = (dKdz−wz).*ddt(ii)/(4*dz);
114

115

116 a([1 Nz]) = 0;
117 for j = 2:Nz−1
118 a(j) = r(j)−s(j);
119 end
120

121 b(1) = −1;
122 b(Nz) = 1;
123 for j = 2:Nz−1
124 b(j) = 1+2*s(j);
125 end
126

127 c(1) = 1;
128 c(Nz) = 0;
129 for j = 2:Nz−1
130 c(j) = −r(j)−s(j);
131 end
132

133 % Boundary conditions at interface
134 a(z0) = (−(K(z0−1)/(K(z0)+K(z0−1))));
135 b(z0) = 1;
136 c(z0) = (−(K(z0)/(K(z0)+K(z0−1))));
137

138 ad = −a;
139 ad(z0) = 0;
140

141 bd(1) = 0;
142 bd(Nz) = 1;
143 for j=2:Nz−1
144 bd(j) = 1−2*s(j);
145 end
146 bd(z0) = 0;
147

148 cd = −c;
149 cd(1) = 0;
150 cd(z0) = 0;
151

152

153 d(2:end−1) = ad(2:end−1).*Tz(1:end−2,ii) + bd(2:end−1).*Tz(2:end−1,ii) + ...
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154 cd(2:end−1).*Tz(3:end,ii);
155

156 d(1) = −dTdz 0*dz;
157 d(end) = Ts(ii);
158 d(z0) = 0;
159

160 Tz(:,ii+1) = TDMAsolver(a,b,c,d);
161 end
162

163 end

C.2 Surface temperatures

1 function [Ts lambda] = Tsurf(m)
2 % Method 1:
3 global d18oI
4 Ts = (m(1)+m(2).*d18oI+m(3).*d18oI.ˆ2);
5

6 v =[−10.09; −0.653; −0.01042];
7 lambda = 0.23*exp(v(1)+v(2).*d18oI+v(3).*d18oI.ˆ2)/31536000;
8

9 % Method 2:
10 global t
11 DJtime = [−112200 −25000 −10000 −8200 −7000 −5000 −2000 −1000 −400 0];
12 T0 = m(1:10);
13

14 Ts = interp1(DJtime,T0,t,'linear');
15 lambda = 0.23.*exp(0.0467.*(Ts+31.7)−0.000227.*(Ts+31.7).ˆ2)/31536000;
16

17

18 end

C.3 Covariance matrix

1 clear all
2 clear global
3 global Cd
4 global Tinit
5 global d18oI
6 global t
7

8 dt = [1000 100 20];
9 t = [−112200:dt(1):−40000,−40000−dt(1):dt(2):−15000,−15000−dt(2):dt(3):0];

10

11 % Height:
12 zH = 3003.8; % Ice thickness (m)
13 zbed = −3000;
14 dz = 5;
15 z = zbed:dz:zH; % −3000 to 3003 in steps of 5m.
16 Nz = max(size(z)); % Number of height steps
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17 z0 = find(z == 0); % The interface between ice and bedrock
18

19 % Load GRIP borehole temperatures:
20 T = load('Data/sum95temp.txt');
21 T1 = [zH − T(:,1)' −3000]; % load height
22 T2 = [T(:,2)' 62]; % load temp
23 Tinit = interp1(T1,T2,z(1:Nz),'linear','extrap')';
24

25

26 d18o = load('Data/grip−ss09sea−cl−20yr.txt');
27 d18oT = −d18o(end:−2:1,1); % Dataset is not unique
28 d18oT = [d18oT;0];
29 d18oP = d18o(end:−2:1,2); % Dataset is not unique
30 d18oP = [d18oP;−35.030000000000001];
31 d18oI = interp1(d18oT,d18oP,t,'linear');
32

33 % Covariance matrix of uncertainty in temperature
34 Csigma = diag(ones(Nz−z0+1,1)*5/1000);
35

36 % Covariance matrix of uncertainty in height
37 Cmc = nan(Nz−z0+1,Nz−z0+1,800);
38 for ii = 1:size(Cmc,3)
39 zz = (zH−z(z0:Nz)').*(1+randn.*0.001);
40 S = Tinit(z0:Nz)−interp1(zH−z,Tinit,zz,'linear','extrap');
41 Cmc(:,:,ii) = S*S';
42 end
43 C1 = mean(Cmc,3);
44

45 % The covariance matrix and the inverse
46 covD = Csigma+C1;
47 Cd = pinv(covD);

C.4 Loglikelihood

1 function logL = loglikelihood(m)
2 global Cd
3 global Tinit
4 % m = [...];
5 % S is residual/misfit. Fx: S = Tz(z0:Nz,end)−Tinit(z0:Nz);
6 % Cd is the global variable with uncertainties
7

8 Tz = Tmodel(m);
9

10 S = Tz(601:1201,end)−Tinit(601:1201);
11 logL = −0.5*S'*Cd*S;
12 end
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